Pemisahan Minyak Dengan Decanter dan Separator

  1. Introduction

D3 PRO adalah suatu system pengolahan minyak tanpa menambahkan air pengencer setelah Minyak kotor keluar dari screw press (sedangkan steam dan hot water di proses sebelumnya tidak di ubah, tidak ada perubahan di dalam extraction efficiency).

UNDILUTED CRUDE hasil screw press setelah melalui desander cyclone akan langsung di dimasukkan ke decanter yg mempunyai gaya centrifugal ~3000 G force, dimana apapun jenis dan- merk decanter nya , crude oil ini akan terpisah-kan dan membentuk lapisan berdasarkan perbedaan berat jenis menjadi:

a. Oil (light phase)

b. Emulsion if any + water with nos (heavy Phase)

c. Solid

decanter 3 phase

decanter 3 phase

2. Process Flow

Clarification Station

Stasiun Pemurnian Minyak

Crude oil dari press masuk ke sand trap tank. Overflow dari sand trap tank mengalir ke COT pertama yang berkapasitas 7 m3. dengan terlebih dahulu melalui Vibrating screen double deck dengan mesh 20 untuk ke dua deck.

Dari COT 1 di pompakan ke COT 2 yang mempunyai kapasitas sama dengan COT 1 melalui Sand Cyclone Singgle Stage (SSC). Dari COT 2 crude oil dipompakan ke Decanter buffer tank yang berkapasitas 3-6 M3 dengan terlebih dahulu melalui sand cyclone double stage. Dari Decanter feed tank crude oil di proses oleh decanter, dimana out put dari decanter terdiri dari 3 phase :

  1. Solid (biasanya di tampung di hopper seberum diaplikasi ke lapangan).
Solid Hooper

Solid Hooper

  1. Light phase dengan kandungan kotoran di bawah 0.05 persen akan di tampung di light phase tank untuk di simpan ke skimming tank dengan kapasitas 30 ton. Setelah itu minyak murni tersebut akan di proses oleh vacuum drier untuk di kurangi kandungan moistnya menjadi di bawah 0.2 persen. Hasil dari Vacuum drier akan di kirim ke oil storage tank untuk selanjutnya dijual ke customer
  2. Heavy phase dengan kandungan minyak di bawah 8 persen akan di tampung di heavy phase tank, untuk selanjutnya di tampung di sludge tank dengan kapasitas 30 ton, untuk selanjutnya di pompakan ke sludge buffer tank dengan kapasitas 3-5 M3 sebagai umpan dari slude separator. Light phase dari sludge separator akan di kirim kembali ke process yang sebelumnya akan di koleksi di reclaimed tank, sedangkan heavy phase separator dengan kandungan minyak di bawah 1 persen to O/WM akan dikirimkan ke final effluent, untuk selanjutnya di kirim ke kolam limbah.

Untuk condensate dari sterilizer akan di kutip di fat-pit untuk di ambil minyaknya dan di kumpulkan di reclaimed tank, untuk selanjutnya di olah kembali ke process bersamaan dengan light phase separator.

Sludge Separator

Sludge Separator

3. D3 PRO Unit

Heavy Phase Pump

Heavy Phase Pump

Standart unit yang dipakai untuk system D3 PRO adalah :

  1. Sand trap tank dengan kapasitas 10 M3 (by kontraktor)
  2. Vibrating screen double deck dengan mesh 20 (by kontraktor)
  3. Crude oil tank 1 kapasitas 7 M3 (by kontraktor)
  4. Sand cyclone singgle stage/SSC c/w pompa (by AIfa Laval)
  5. Crude oil tank 2 kapasitas 7 M3 (by Kontraktor)
  6. Sand cyclone second stage/STC c/w pompa (by Alfa Laval)
  7. Decanter feed tank kapasitas 5 M3 (by kontraktor)
  8. Decanter (by Alfa Laval)
  9. Light phase tank kap 3 M3 (by kontraktor)
  10. Pompa dari light phase tank ke pure oil tank (by kontraktor)
  11. Pure oil tank kapasitas 30 M3 (by kontraktor)
  12. Pompa pure oil tank ke skimmed tank (by kontraktor)
  13. Skimmed oil tank kapasitas 30 M3 + stand by pump (by kontraktor)
  14. Vacuum drier c/w vacuum pump & drier oil pump (alfa laval)
  15. Heavy phase tank kap 3 M3 (by kontraktor)
  16. Pompa dari heavy phase tank ke sludge tank (by kontraktor)
  17. Sludge tank kap 30 M3 (by kontraktor)
  18. Hot water tank kapasitas 3 M3 (by kontraktor)
  19. Sludge separator PASX 710 (by Alfa laval)
  20. Solid conveyor (by kontraktor)
  21. Reclaimed oil tank kapasitas 3 M3 (by Kontraktor)

 

4. Lay Out Dimention

D3 PRO LAYOUT

D3 PRO LAYOUT

  1. Luas bangunan stasiun klarifikasi : 21 x28 M2
  2. Ketinggian dari lantai ke ujung buffer tank : 13 M
  3. Luas platform decanter & vacuum Drier 5 x 10 M2 dengan ketinggian 3.5 M dari lantai
  4. Luas plat form untuk decanter feed tank : 5 x 6 M2 dengan ketinggian dari lantai 11 M

5. Referensi

Alfa Laval D3 Pro System Project

Clarification Station

Tujuan dari Clarifier adalah untuk memproses atau memurnikan jumlah maksimum Crude Palm Oil (CPO) dari CPO dan Non Oily Solids (NOS) yang tidak larut sehingga menghasilkan CPO yang baik bersih dan kering. produk akhir CPO harus memiliki kandungan kotoran (dirt) tidak lebih dari 0,02% dan kadar air (moisture) tidak lebih dari 0,01%. CPO hasil pressing ini direbus dengan air panas (steam) kemudian di diamkan agar terjadi proses pengendapan, dimana minyak akan mengambang dan sludge akan mengendap untuk memperoleh proses pemurnian selanjutnya. Setelah menetap itu dialirkan ke bagian bawah kompartemen menetap luar. Dari sini itu diperbolehkan meluap ke Heat Exchanger / pengering sebelum mentransfer melalui Tank dikalibrasi dengan metode pilihan penyimpanan atau kemasan.

Clarification Process

Palm Oil Mill Clarification Process

Di Pabrik Minyak Sawit, Minyak kasar yang diperoleh dari pengempaan, dibersihkan dari kotoran yang terutama berasal dari daging buah berupa bahan padat dan air. Maksud dari pada pembersihan/pemurnian Minyak kasar adalah untuk memurnikan Minyak tersebut agar diperoleh mutu sebaik mungkin dan dapat dipasarkan dengan harga yang layak.

Flow Proses

Crude Oil dari Screw Press masuk ke Sand Trap tank melalui sebuah talang (Gutter). Overflow dari Sand Trap Tank mengalir ke Crude Clarification StructureOil Tank (COT) melalui Vibrating Screen double deck dengan mesh 20.

Dari COT Crude Oil dipompakan melewati Crude Oil Buffer Tank menuju Vertical Continuous Settling Tank (CST) kapasitas 120 m3. minyak mentah ditahan untuk pengendapan dalam CST untuk memisahkan minyak bagus dan sludge.

Kebutuhan air panas untuk proses klarifikasi dan pressing di suplay dari Hot Water Tank kapasitas 6 m3 dengan over flow menuju Hot Well Tank yang akan dipompakan kembali oleh Hot Well Pumps menuju Hot Well Tank.

Pemisahan Biji Dan Sabut

Pendahuluan

Proses pemisahan serabut dari biji pada ampas hasil pengempaan bertujuan terutama untuk memperoleh biji sebersih mungkin yang kemudian akan menghasilkan Inti Sawit secara rationil, yaitu kerugian yang sekecil-kecilnya dengan hasil dan mutu Inti Sawit yang setinggi mungkin.

Meskipun proses itu sendiri tidak mempunyai segi-segi teknologis yang berarti namun tujuan untuk memperoleh biji yang sebersih mungkin dari dalam gumpalan sampah/ampas pengempaan sangat dipengaruhi oleh segi teknologis dari proses yang mendahuluinya.

Untuk itu perlu dimengerti/dipahami tujuan dari proses perebusan dan syarat-syarat yang harus dipenuhi pada proses pengadukan agar tujuan dari proses pemisahan serabut dari biji dapat dicapai sebaik mungkin.

Hal-hal yang akan timbul pada pemisahan Biji dan Serabut

Jika proses pemisahan serabut dari biji tidak menghasilkan biji yang bersih, maka sebab-sebab utama dari padanya adalah :

a. Kegagalan dalam mencapai syarat tersebut dari proses perebusan.

b. Tidak terpenuhinya syarat tersebut dari proses pengadukan.

c. Pengempaan yang tidak dapat menghaaasilkan ampas pengempaan cukup kering (Ampas Press basah karena masih banyak mengandung minyak).

Perhatian   :     Dalam urutan tersebut diatas terdapat hubungan sebab dan akibat yang erat sekali meskipun tidak terdapat pada proses pemisahan itu sendiri, tetapi merupakan sebab-sebab utama yang akan mengganggu proses pemisahan antara serabut dengan biji.

d.   Pemuatan/pengisian alat pemisah yang melebihi kemampuannya (Over capacity). Hal ini harus dihindari dengan jalan :

  • Pemuatan/pengisian yang teratur dan yang disesuaikan dengan daya muat alat itu.
  • Memasang alat pemisah dengan kapasitas yang sesuai dengan banyaknya ampas pengempaan yang harus diproses.

e. Jumlah pusingan Trommol alat pemisah yang tidak sesuai.

f. Jumlah pusingan kipas (Ventilator) yang tidak cukup.

g. Kemungkinan adanya kebocoran pada saluran hisap (Ducting)

Akibat-akibat yang akan timbul sehubungan dengan hal tersebut diatas adalah :

Gesekan antar biji & gesekan antara biji dengn dinding Trommol (Polishing Drum) tidak cukup besar untuk mengkompensir/ mengimbangi/menghilangkan/mentiadakan akibat-akibat dari kegagalan dalam proses perebusan, pengadukan dan pengempaan sehingga pemisahan tidak menghasilkan biji yang bersih.

Biji kotor terdiri dari biji yang masih banyak mengandung serabut dan ini menyebabkan terjadinya hal-hal sebagai berikut :

  • Penurunan kadar air dari biji pada saat dikeringkan menjadi terhalang. Penurunan kadar air biji diperlukan sebelum biji-biji tersebut dipecahkan didalam alat-alat pemecah biji (Nut Cracker)
  • Serabut yang masih melekat pada biji akan merupakan pelindung biji terhadap benturan/gesekan yang menjadi dasar dari proses pemecahan biji dan berarti menurunkan effek pemecahan biji dengan akibat selanjutnya.
  • Biji yang tidak pecah (biji Balen) pada bagian pemecahan biji akan meningkat & menurunkan kapasitas pada unit pemecah biji karena biji tersebut harus dipecah kembali.
  • Kerugian karena biji setengah pecah dan inti pecah akan meningkat.
  • Serabut/sampah akan mengotori dan menggangu bekerjanya alat pemecah  dan alat pemisahan.
  • Kadar kotoran pada produksi Inti akan meningkat & menyebabkan terjadinya penurunan mutu kernel.

 

Artikel Terkait :

Pemurnian (Clarification)

 

Pemisahan dengan cara Biologis

Pemisahan secara biologis yang dimaksudkan disini adalah pemisahan (pengutipan minyak) yang dilakukan pada fat pit (sludge oil recovery system).

Minyak yang di fat pit tersebut umumnya berasal dari :

–     Pembuangan (blow down) dari stasiun rebusan.

–     Lumpur/air buangan stasiun clarificatis yaitu antara lain berasal dari Decanter, Nozzle Separator dan Sand Tank.

–     Minyak-minyak yang terikut ke pembuangan pada saat pencucian, dll.

Minyak-minyak yang diperoleh di fat pit sebahagian adalah karena proses pengendapan dan sebahagian lagi adalah karena proses biologis, yaitu terjadinya pemecahan molekul-molekul minyak sebagai akibat fermentasi.

Minyak yang diperoleh dari fat pit tersebut selanjutnya dipompakan kembali ke crude oil tank untuk diproses ulang sedangkan sisa lumpur (sludge) dan air dialirkan ke kolam limbah (effluent treatment plant).

Walaupun telah dilakukan upaya pengutipan minyak semaksimal mungkin, namun pada lumpur/air buangan fat pit masih saja ada minyak yang terikut dan ini selanjutnya dihitung sebagai kerugian.

Batasan kerugian yang dapat ditolerir untuk ini adalah maksimum 1% terhadap kadar basah (on wet basis).

Artikel Terkait :

Pemurnian (Clarification)

Pemisahan Minyak dengan cara Pengendapan (Settling)

Pemisahan dengan cara Centrifuge

 

Process Flow Diagram Of Palm Oil Mill

A process flow diagram (PFD) is a diagram commonly used in engineering to indicate the general flow of plant processes and equipment. The PFD displays the relationship between major equipment of a plant facility and does not show minor details such as piping details and designations.

The process of extracting Palm Oil from Oil Palm Fresh Fruit Bunches (FFBs) is long established. It is done using broadly the same technique but with one of three different technologies. A process flow diagram (PFD) of palm oil milling process is shown as figure below.

Process Flow Diagram

Process Flow Diagram

The Process Flow Chart provides a visual representation of the steps in a process. Flow charts are also referred to as Process Mapping or Flow Diagrams. Constructing a flow chart is often one of the first activities of a process improvement effort, because of the following benefits:

  • Gives everyone a clear understanding of the process
  • Helps to identify non-value-added operations
  • Facilitates teamwork and communication
  • Keeps everyone on the same page

A flow chart diagram of palm oil milling process is shown as figure below.

Flow Chart Diagram Of Palm Oil Mill

Flow Chart Diagram Of Palm Oil Mill

Related Post :

Pabrik Minyak Kelapa Sawit (Palm Oil Mill)

Kelistrikan Pabrik Kelapa Sawit (Palm Oil Mill)

Proses Penerimaan Buah

 

Pemisahan dengan cara Centrifuge

Pendahuluan

  • Minyak dan Sludge yang diperoleh dari hasil pemisahan dengan cara pengendapan kemudian dialirkan kedalam masing-masing tanki untuk diproses lebih lanjut.

    Sludge Centrifuge

    Sludge Centrifuge

  • Seperti yang telah dijelaskan terdahulu bahwa didalam minyak hasil pemisahan ini masih mengandung unsur-unsur :
  1. Air                    :  ±  0,75%
  2. Zat padat       :  ±  0,25%
  • Minyak dengan kandungan  tersebut diatas masih belum memenuhi standard mutu jual, sehingga harus diproses lebih lanjut untuk menurunkan kadar air dan zat padat yang terkandung didalamnya (proses penjernihan).
  • Proses lanjutan (penjernihan) ini sebenarnya masih dapat dilakukan dengan cara pemanasan dan pengendapan tetapi akan memakan waktu yang lebih lama dan dengan segala resikonya antara lain :
  1. Perlu adanya penambahan tanki-tanki.
  2. Sebagai akibat pemansan yang berlebihan untuk waktu yang lama, maka bilangan peroxida didalam minyak akan meningkat akibat oxidasi. Hal ini sangat tidak diinginkan karena akan menurunkan harga jual minyak sawit.
  • Dengan penjelasan tersebut diatas dapatlah ditarik suatu kesimpulan bahwa penggunaan Centrifuge adalah lebih sesuai, karena waktu pemisahan yang lebih cepat/singkat dan dengan tingkat oxidasi yang jauh lebih kecil.

Tujuan Penggunaan Centrifuge

Centrifuge adalah mesin berputaran sangat tinggi yang digunakan untuk memisahkan cairan-cairan yang tidak saling bersenyawa (tidak saling melarutkan), mempunyai BJ yang berbeda dan sekaligus juga benda padat yang terkandung didalamnya. Dengan kata lain Centrifuge dapat digunakan dalam berbagai proses untuk pemisahan cairan-cairan atau antara cairan dengan bahan padat yang terkandung didalam.

Dengan bantuan gaya Centrifugal, komponen-komponen yang akan dipisahkan dipengaruhi oleh kekuatan yang ribuan kali lebih besar dari gaya gravitasi bumi, sehingga pemisahan minyak, air dan zat padat yang terkandung akan jauh lebih cepat didalam sebuah Bowl yang berputar.

Apa yang dikehendaki dari suatu Centrifuge dalam applikasinya di pabrik kelapa sawit adalah untuk melakukan tugas-tugas sebagai berikut :

1. Untuk membersihkan minyak (top oil) yang dihasilkan dari proses pemisahan pada clarifier tank sebelum diproses (dikeringkan) di Vacuum dryer. Jenis centrifuge yang digunakan untuk aplikasi ini adalah Oil Purifier, yaitu yang bertugas untuk memisahkan minyak dari air dan kotoran-kotoran ringan yang masih terkandung didalamnya.

2. Untuk mengambil kembali minyak yang masih terikut dengan sludge (lumpur) yang berasal dari clarifier tank.

Jenis centrifuge yang digunakan untuk aplikasi ini adalah Nozzle Separator atau Decanter atau kombinasi dari kedua nya.

Perbedaan jenis centrifuge tersebut diatas adalah disebabkan adanya perbedaan komposisi dari masing-masing produk yang akan diolah yaitu sebagai berikut :

  • Minyak dari Top Oil Tank terdiri dari :
  1. Air                    :  ± 0,75%
  2. Minyak           :  ± 99%
  3. Zat Padat       :  ± 0,25%
  • Sludge (lumpur) Clarifier Tank terdiri dari :
  1. Air                    :  ± 75%
  2. Minyak           :  ± 15%
  3. Zat Padat       :  ± 10%

Dari contoh diatas dapat dilihat bahwa komposisi masing-masing produk sangatlah berbeda walaupun produk-produk tersebut terdiri dari komponen yang sama, yaitu : minyak, air dan zat padat yang terkandung didalamnya, namun pengolahan dari ketiga produk tersebut haruslah menggunakan jenis Centrifuge yang berbeda agar dapat diperoleh hasil yang optimal.

Gaya Centrifugal

Dengan bantuan gaya centrifugal, komponen-komponen yang akan dipisahkan dipengaruhi oleh kekuatan yang ribuan kali lebih besar dari gaya gravitasi bumi, sehingga pemisahan minyak, air dan zat padat yang terkandung didalamnya akan jauh lebih cepat didalam sebuah bowl yang berputar.

Untuk jelasnya, dibawah ini diberikan suatu dasar perhitungan untuk mendapatkan gambaran dari perbedaan pemisahan dengan gaya gravitasi (alamiah) dan pemisahan dengan bantuan gaya centrifugal yang terjadi didalam suatu bowl yang berputar yaitu sebagai berikut :

Apabila Percepatan Radial (a) dalam Separator adalah :

=V2/R………………………….           (1)

dan Kecepatan Radial (V)

V = (n/60)  x  2  π  R ………………(2)

dimana :

n =  jumlah putaran permenit (RPM)

R = Jari-jari (Radial distance)

maka subsitusi persamaan (2) ke (1) merupakan percepatan radial adalah :

= (n2  x  4 π2  R2)/(3600  x R)

= (n2  x  π2  R)/900  ………………………(3)

Percepatan Gravitasi adalah :

=  981 cm/sec2 ……………………….(4)

Maka apabila persamaan dibagi dengan persamaan 4 akan didapat berapa kali percepatan pemisahan Centrifugal terhadap percepatan gravitasi, atau menurut rumus :

= (n2  x  π2  R)/(900 x 981) …………………(5)

Contoh :

Suatu Separator dengan jari-jari Bowl (R) = 40 cm, pada putaran (n) = 3000 RPM, maka percepatan memisah bila di bandingkan dengan percepatan gravitasi (menurut persamaan 5) adalah sebesar :

= (n2  x  π2  R)/(900  x  981)

= ((3000)2  x  (3,14)2  x  40)/(900  x  981)

= 4020 kali ≈ 4000 kali percepatan gravitasi

Pada pemakaian Separator dapat disimpulkan bahwa partikel minyak yang berputar dalam mesin centrifugal, dengan jari-jari Bowl ® 40 cm dari sumbu putar pada 3000 RPM (n) gaya pemisahannya 4000 kali lebih besar dari pemisahan dengan cara gravitasi, misalnya pada Static Clarifier.

Untuk mengetahui hubungan berapa kali percepatan gravitasi terhadap jari-jari Bowl (R) dan putaran Sludge Separator (n) dapat dilihat pada tabel-1

Jari – jari (R) dalam Cm

N = RPM

10

20

30

40

50

800

1.000

1.200

1.400

1.600

1.800

2.000

2.500

3.000

71

111

160

218

285

360

444

694

1.000

142

222

320

436

570

720

888

1.388

2.000

213

333

480

654

755

1.080

1.332

2.082

3.000

284

444

640

872

1.140

1.440

1.776

2.776

4.000

355

555

800

1.090

1.425

1.800

2.220

3.470

5.000

Tabel-1 : Hubungan percepatan gravitasi terhadap jari-jari Bowl dengan putaran sludge Separator (n)

Sebelum diolah oleh mesin Nozzle Separator hal yang perlu diperhatikan :

  • Sludge harus bertemperatur tinggi (minimal 95º) agar viskositas minyak rendah dan mudah untuk dipisahkan.
  • Sludge tersebut harus melalui Ritary Brush Strainer dan Sand Cyclone. Tujuan digunakan Rotary Brush Strainer untuk menyaring fibre beserta kotoran, hal ini akan memperkecil viskositas, sedangkan Sand Cyclone untuk membebaskan pasir agar Nozzle tidak cepat aus dan tidak cepat sumbat.

Maka untuk memperoleh gambaran penggunaan Brush Strainer dalam memperkecil viscositas dapat dilihat pada tabel 2.

Tabel-2 : Viskositas sebelum dan sesudah Brush Strainer pada temperatur yang konstan (80º).

Nomor Sample

Apparent viscositas centipoise

Sludge sebelum Brush Strainer

Sludge setelah Brush Strainer

1

2

3

4

5

6

7

8

9

10

142,0

89,6

73,4

48,1

39,4

26,6

22,1

15,2

12,9

10,4

76,8

50,5

42,3

30,0

25,3

17,6

14,7

10,5

9,2

7,6

Pemisahan Minyak dengan cara Pengendapan (Settling)

Proses pemurnian minyak dilakukan dengan tiga cara yaitu :

–          Cara dengan pengendapan (Settling)

–          Cara dengan pemusingan (Centrifuge)

–          Cara dengan pengaruh biologis.

Penjelasan  dibawah ini akan memberikan gambaran mengenai penggabungan dimaksud serta keterkaitan antara satu proses dengan proses yang menyusul berikutnya.

Continuous Settling Tank

Continuous Settling Tank

 

Proses pendahuluan

Minyak kasar yang diperoleh dari hasil pengempaan (Press) dialirkan ke Saringan Getar (Vibrating Screen) untuk disaring, agar kotoran kasar berupa serabut-serabut dan cangkang yang lolos dari Saringan Press (Press Cage) dapat dipisahkan. Minyak kasar yang telah disaring selanjutnya dimasukkan kedalam suatu bak penampung (Crude Oil Tank), sedangkan kotoran yang berupa Serabut dan Cangkang dikembalikan ke Fruit Elevator untuk di proses ulang (Re-Cycle ke Digester/Press).

Minyak kasar atau Crude Oil yang telah terkumpul didalam Crude Oil Tank kemudian dinaikkan temperaturnya hingga mencapai 95 s/d 100ºC untuk selanjutnya dipompakan ke Tanki Pengendap (Static Clarifier Tank).

Menaikkan temperatur Minyak kasar adalah sangat penting artinya ; yaitu untuk memperbesar perbedaan berat jenis (BJ) antara Minyak, air dan Heavy Sludge yang terkandung didalam minyak kasar tersebut agar pada proses pengendapan minyak yang berat jenisnya lebih ringan akan mudah memisahkan diri dan naik kepermukaan.

Jika Minyak kasar dari pengempaan dibiarkan sementara waktu, maka akan terbentuk lapisan minyak dipermukaan yang semakin lama semakin tebal.

Untuk mendapatkan pengertian yang lebih jauh terhadap faktor-faktor yang mempengaruhi proses pengendapan, maka akan diteliti apakah yang akan terjadi seandaninya cairan yang diendapkan terdiri hanya dari dua unsur yang tidak dapat bercampur (dalam hal ini Air dan Minyak) karena berat jenis yang berbeda-beda sedangkan zat yang terdispersi (Minyak) didalam zat dispersis (Air) berbentuk butir-butir kecil dari berbagai garis menengah.

Diumpamakan bahwa butiran-butiran minyak berbentuk bola. Butiran tersebut apabila dialirkan dalam suatu Tabung berisi media dengan berat jenis yang lebih besar akan mendapat gaya dorong keatas.

Butiran-butiran minyak yang dianggap berbentuk bola mempunyai volume sebagai berikut :

Volume      =    (4/3)    x  phi.  R3            =  1/6 . phi.  d3

Dimana     :  R = jari-jari bola minyak

d = diameter bola minyak

phi = 3.14

Apabila :    – Berat jenis (BJ) dari zat yang terdispersi (Minyak)  =    Y1

– Berat jenis (BJ) dari zat dispersie (Air) ………….    =    Y2

– Garis tengah butir (Minyak) ……………………….  =    d

Maka butir-butir zat yang terdispersi akan bergerak kearah permukaan oleh gaya sebesar :

1/6 p  d3  (Y2 – Y1) ………………………………….. (I)

Pada awalnya gerak ini adalah gerak yang dipercepat yang kemudian menjadi gerak yang beraturan. Pengaruh geseran yang dialami butir-butir minyak dalam geraknya didalam zat dispersie (Air) adalah m,engikuti hukum STOKES.

Menurut hukum STOKES daya gerak butir minyak (P) adalah :

3 phi n d.v  ……………………………………………………….    (II)

Dimana :

n (etha)  =       Viscositas Dynamis

V  =       kecepatan beraturan dari geraknya butir.

Dari persamaan (I) dan (II) apabila gerak dari butiran Minyak untuk mencapai kecepatan beraturan adalah sama, maka :

1/6 p d3 (Y2 – Y1) =  3 p h d.v

Kecepatan beraturan (v) adalah :

= ((1/6 . phi . d3)/(3 . phi . n . d)) x (Y2 – Y1)

= ((d2)/(18n)) x (Y2 – Y1)       ……………………………   (III)

Jalan pemikiran tersebut diatas tidak seluruhnya tepat, meskipun cukup cermat untuk keperluan kita, karena jarak yang telah ditempuh oleh butir minyak sebelum gerak yang dipercepat berobah menjadi gerak yang beraturan, dapat diabaikan saja karena sangat kecilnya.

Contoh       :

Suatu butir minyak (BJ = 0,9) dengan diameter = 0,04 mm, akan bergerak kepermukaan didalam lingkungan air bersuhu 20ºC yang mempunyai viscositas dynamis 0,01 deci-poise dengan kecepatan,

v = (d2 (Y2 – Y1)) / 18

v = ((0.04mm x 103)2 x (1 – 0.9))/ (18 x 0,01 deci-poise)

v = ((0.04)2 x 106 x 0.1)/(18 x 0,01)

v = 900 micron/dt

v = 900  x  10-4  cm/dt

v = 9  x  10-2  cm/dt

Jika pada suatu pengendapan, dengan tinggi apisan cairan (h) = 4 meter, sedangkan dikehendaki tak ada lagi butir-butir minyak ≥ 0,04 mm yang masih belum terpisahkan, maka diperlukan jangka waktu pengendapan :

h/v = (4 x 102 detik)/ 9.10-2 = (4 x 104)/9 = 4.444,44 detik  =  ± 1,23 jam

Sehingga waktu yang diperlukan untuk pemisahan campuran dari 2 unsur (Air dan minyak) dengan pengendapan adalah tergantung dari :

h =   Tinggi lapisan campuran dalam cm

d =   Des-integrasi dari minyak (diameter minyak)

(Y2-Y1)=  Selisih berat jenis

(etha) =  Viscositas dari air

Tingginya Lapisan Campuran

Dari h/v = waktu pengendapan, nyatalah bahwa semakin besar (h)  =  semakin tinggi lapisan cairan, semakin panjang pula jangka waktu yang diperlukan untuk pengendapan.

Karena diutamakan waktu pengendapan yang sependek mungkin maka harus diusahakan lapisan yang setipis mungkin.

Didalam praktek perpendekan ini dapat dicapai dengan pemisahan sehingga cairan terbagi dalam beberpa lapisan-lapisan dan ini didapat misalnya, pada pengendapan Static Clarifier.

Des-integrasi Dari Minyak

Des-integrasi minyak diartikan bahwa halusnya butir-butir minyak atau semakin halus (kecil) akan semakin panjang jangka waktu pengendapan. Oleh karena itu harus tetap diusahakan supaya butir-butir minyak yang keluar dari pengempaan tidak terpecah dalam butir yang halus.

Didalam prakteknya hal yang demikian tergantung dari cara pengempaan dan tak selalu dapat dicapai.

Hal ini disebabkan :

–          Pengadukan yang berlebihan

–          Pengacauan (didalam talang minyak kasar)

–          Pengempaan pada tekanan tinggi dan lain sebagainya.

Selisih berat jenis dari kedua zat yang akan dipisahkan sesamanya, dapat dikatakan tetap karena juga pada umumnya suhu kedua zat adalah sama.

Agar supaya memperoleh gambaran mengenai jalannya proses pengendapan dari minyak kasar yang dihasilkan oleh pengempaan dan yang mengandung banyak zat padat bukan lemak, kita umpamakan tangki terisi oleh minyak kasar.

Jika minyak kasar kita biarkan maka isi tanki akan mengendap dan akan terbentuklah lapisan sebagai berikut :

a.   Lapisan pertama   :     Yang terutama terdiri dari minyak.

b.   Lapisan kedua       :     Terdiri dari Air dan minyak yang mungkin masih dikandungnya dan berada dalam bentuk yang terhomogenisir atau jika berbentuk emulsie maka minyak ini dengan air merupakan emulsie yang masih hidup.

c.   Lapisan ketiga       :     Pada umumnya terdiri dari emulsieminyak/air yang tak terpecahkan; yang menjadi stabilisator dari emulsie yang tak hidup ini terutama adalah zat-zat padat yang dikandung oleh minyak kasar.

Lapisan Pertama

Minyak dari lapisan ini masih mengandung bintik-bintik air dan zaat pengotor lainnya. Untuk memperoleh minyak murni maka kadar air diturunkan dari ± 0,75% sampai seminimal mungkin (atau berkisar £ 0,10%).

Lapisan Kedua

Jika dinilai dari sifat-sifat emulsi yang dikandungnya kecuali dengan oengendapan, minyak didalam lapisan ini dapat dibebaskan dengan proses kimia, umpamanya dengan pembubuhan Electrolyte yang dapat memecahkan emulsie.

Dengan percobaan kearah ini, ternyata hasil yang dicapai tidak memberikan harapan untuk dilakukan secara besar-besaran karena dari percobaan itu didapat kesan bahwa perobahan yang terjadi karena pembubuhan Electrolyte, disamping memecahkan beberapa emulsie yang telah ada, juga menimbulkan emulsie yang baru.

Oleh sebab itu maka pembebasan minyak dari emulsie lapisan kedua dengan jalan pemanasan atau dengan jalan pemusingan (Centrifuge) adalah tetap lebih sederhana.

Lapisan Ketiga

Lapisan ini mengandung emulsie yang tidak hidup dan zat organik yang padat.

Terbentuknya emulsie sangat dipengaruhi oleh tingkat hubungan secara kimiawi maupun physic antara zat padat itu terhadap zat yang meng-emulgeer (air).

Maka dalam hal ini perhatian yang khusus untuk lapisan ketiga tersebut sangat diperlukan, agar supaya kerugian minyak dapat dibatasi serendah mungkin.

Minyak kasar hasil pengempaan yang akan diendapkan mempunyai komposisi sebagai berikut :

  • Minyak : ± 50%
  • Air : ± 42%
  • Zat Padat : ±   8 %

Proses pengendapan (Settling) dilakukan didalam suatu tanki vertikal yang mempunyai daya tampung berkisar 70 M3.

Tanki ini disebut Static Clarifier (Clarification Tank) yang bekerja secara kontinu, artinya ninyak kasar dari Crude Oil Tank dipompakan ke tanki pengendap ini secara terus menerus dan pengeluaran dari tanki ini juga akan berlangsung secara terus-menerus yaitu berupa :

1. Minyak (Top Oil)

Minyak yang diperoleh dari hasil pengendapan ini mempunyai komposisi sebagai berikut :

  • Minyak                        : ± 99%
  • Air                    : ± 0,75%
  • Zat Padat        : ± 0,25%

Selanjutnya minyak ini dialirkan kedalam tangki penampung minyak (Oil Tank) untuk kemudian akan diproses lebih lanjut  dengan menggunakan oil Purifier dan Vacum Dryer.

Pemisahan yang terjadi adalah didasari “Hukum Bejana Berhubungan”’ dimana akan terjadi selisih ketinggian permukaan antara media ringan (minyak) dan media berat (air dan Sludge).

Karena pemisahan yang akan dilakukan adalah secara kontinue, maka selisih ketinggian dari kedua media tadi harus diatur posisinya agar tujuan/hasil pemisahan yang diperoleh enar-benar sesuai dengan apa yang kita inginkan.

Untuk mengatur selisih permukaan tersebut diatas, maka rumus sederhana yang biasa digunakan adalah sebagai berikut :

->  Po g x + Ps g y = Ps g  z

g    =    Percepatan gravitasi (» 9,81 m/dt2)

Po  =    Berat jenis minyak (» 0,9 gm/cc)

Ps  =    Berat jenis sludge (» 1,0 gm/cc)

Maka persamaan menjadi :

->  Po x + Ps y = Ps  z ………………………………. (1)

Sehingga persamaan (1) menjadi :

->  0,9x + y = z ………………………………………. (2)

Menurut gambar diatas, terlihat : SH + z  = x + y  dimana :

SH =    Selisih permukaan minyak dan sludge

x    =    Tinggi lapisan minyak

y    =    Tinggi lapisan Sludge

z    =    Tinggi lapisan miniyak dan sludge

->  SH =    x  +  y  –  z………………………………..  (3)

SH =    Ketinggian Sludge Skimmer dibandingkan Oil Skimmer.

Substitusi rumus (2) ke (3)

->  SH =  x  +  y  –  (0,9x  +  y)

=  x  +  y  –  0,9x  –  y

=  x  –  0,9x

=  0,1x

Jadi :

->  x  =  10 SH

Dari hasil perhitungan tersebut dapat disimpulkan bahwa selisih ketinggian antara permukan minyak dengan saluran keluar sludge atau tinggi SH adalah 1/10x.

2. Lumpur (Sludge)

Sludge yang diperoleh dari hasil pengendapan ini mempunyai komposisi sebagai berikut :

Minyak :  ±  15%

air           :  ±  75%

Zat padat :  ±  10%

Sludge ini kemudian dialirkan ke tanki Sludge untuk kemudian akan diproses lebih lanjut dengan Nozzle Separator atau Decanter.

Hal-hal yang perlu mendapat perhatian pada proses pemisahan dengan cara pengendapan ini antara lain adalah sebagai berikut :

a.   Untuk mendapatkan suatu hasil pemisahan yang baik, maka tangki Clarifier ini harus diisi secara kontinu dengan volume yang teratur dan dengan temperatur crude oil berkisar 95 s/d 100ºC.

Hindari cara pengisian yang berfluktuasi karena hal ini dapat menimbulkan Turbulensi dan mengacaukan lapisan-lapisan yang sudah terbentuk didalam tanki Clarifier.

b.   Tanki Clarifier dilengkapi dengan pipa pemanas (Heating Coil) yang berfungsi untuk memanaskan Crude Oil sisa pengolahan yang lalu dan hanya perlu dioperasikan paling lama 30 menit sebelum dimulainya pengolahan.

Selam proses berlangsung, pipa pemanas (Heating Coil) yang ada didalam tanki Clarifier tidak boleh dibuka/dioperasikan disebabkan hal-hal sebagai berikut :

  1. Pemanasan oleh Heating Coil akan menyebabkan air yang terkandung ada didalam Heavy Phase dan berada disekitar Heating Coil menjadi mendidih.
  2. Pada air yang mendidih akan timbul gelembung-gelembung udara yang bergerak keatas untuk kemudian menimbulkan arus (Turbulensi) yang akan mengacaukan proses pemisahan serta pengendapan yang sudah mulai terbentuk.
  3. Setiap pagi sebelum pengolahan dimulai dan sebelum dilakukan pemanasan pendahuluan, maka sebahagian kecil dari isi tanki (± 3 m3) perlu dikeluarkan dan dimasukkan kedalam bak penampung (sludge Drain Tank).

Maksud pengeluaran ini adalah agar kotoran dan pasir yang telah mengendap pada saat tangki dalam keadaan diam (Statis) dapat dikeluarkan.

Pada Sludge Drain Tank ini pasir dan kotoran akan dipisahkan dari minyak yang masih terikut bersamanya ; untuk kemudian minyak yang telah bebas dari pasir dan kotoran tersebut dikembalikan ke Clarifier Tank atau ke Crude Oil Tank.

Pemurnian (Clarification)

Tujuan Utama

Di Pabrik Minyak Sawit, Minyak kasar yang diperoleh dari pengempaan, dibersihkan dari kotoran yang terutama berasal dari daging buah berupa bahan padat dan air.

Maksud dari pada pembersihan/pemurnian Minyak kasar adalah untuk memurnikan Minyak tersebut agar diperoleh mutu sebaik mungkin dan dapat dipasarkan dengan harga yang layak.

Untuk dapat memahami dengan baik tujuan dan hakekat dari pada pemurnian Minyak kasar, maka perlu dipelajari sifat-sifat “fisika-kimiawi” dari Minyak kasar tersebut.

Minyak kasar sebagai hasil pengempaan dapat diperinci sebagai berikut :

a.    Campuran Minyak dan Air

Campuran yang unsurnya (Air dan Minyak) terbagi tidak terlalu halus sehingga dengan cepat dan mudah kedua unsur itu dapat dipisah-pisahkan sesamanya.

Minyak yang sedemikian berasal dari :

  • Bejana pengaduk yang dipanaskan (Digester) yaitu minyak yang keluar sebelum proses pengempaan (Press).
  • Minyak yang keluar dari hasil pengempaan tahap awal dimana tekanan masih rendah.

Minyak dalam campuran ini disebut Minyak bebas karena boleh dikatakan tak mempunyai affinitas apapun dengan air yang mengelilinginya dan yang tercampur dengannya.

Minyak jenis ini bila dibiarkan akan segera memisah ditas lapisan air yang mengendap.

b.   Campuran homogen antara Butir Air dan Minyak

Campuran homogen antara Butir air dan minyak yang terbagi sangat halus. Dalam hal demikian kedua unsur merupakan emulsie yang sangat stabil.

Campuran semacam ini terutama berasal dari tahap terakhir pengempaan yaitu sisa-sisa zat cair dalam ampas yang ditekan dan dipaksakan mencari jalan keluar melalui celah-celah kecil dari dalam ampas pengempaan, sehingga terpecah/terurai menjadi butir-butir molekul dan minyak seakan-akan terhomogenisir didalam lingkungan air.

c.   Emulsi Air/Minyak

 Emulsi semacam ini boleh dikatakan tidak berarti didalam pemurnian minyak di Pabrik Minyak Sawit asalkan dapat dijamin viscositas yang layak (pada suhu 80ºC – 100ºC).

d.    Emulsie Minyak/Air

Jika de-integrasi minyak didalam air sedemikian jauhnya sehingga terjadi homogenisasi maka diperoleh suatu emulsi yang stabil, walaupun diketahui juga bahwa tanpa de-integrasi minyak dalam air yang intensif, akan dapat juga terbentuk emulsie yang stabil berkat adanya emulgator yang aktif.

Asam lemak, zat lendir dan serat halus  serta sisa-sisa sel merupakan emulgator ataupun stabilisator sehingga dapat terjadi emulsie yang hidup dan yang tak hidup.

Minyak kasar yang berasal dari pengempaan terdiri dari butir-butir minyak berbagai ukuran didalam lingkungan air. Air yang dimaksud bukan air murni dalam arti physis, tetapi Phase Disperse dari emulsie.

  • Butir-butir minyak itu menunjukkan gerak kepermukaan. Apabila medium pemisah antara butir-butir itu hilang, maka akan terjadi penggabungan butir kecil menjadi butir-butir yang lebih besar dan dengan demikian gerak kepermukaanpun menjadi dipercepat.
  • Gerak keatas dan penggabungan butir menjadi butir-butir besar adalah gerak kearah keseimbangan sehingga akhirnya terjadi lapisan minyak disebelah atas dan lapisan air bawahnya.
  • Mula-mula pemisahan kedua lapisan itu tidak jelas (kabur) ; butir-butir kecil air didalam lapisan minyak dan butir-butir kecil minyak dalam lingkungan air. Butir-butir air akan dapat mengendap masuk kedalam lingkungan air jika lapisan minyak cukup encer (BJ Air > BJ Minyak).
  • Butir-butir halus minyak lambat sekali bergerak keatas dan sebagian akan tetap berbentuk butir-butir yang halus sekali dan melayang didalam ligkungan air.
  • Emulgator-emulgator dengan muatan listriknya mencegah ataupun memperlambat penggabungan butir-butir halus minyak itu.
  • Butir-butir halus yang bermuatan listrik itu adalah merupakan emulsie yang hidup.
  • Emulsie yang tak hidup diakibatkan oleh gejala absorbsi yang timbul disebabkan adanya zat-zat organik seperti misalnya : sisa sel dan serat-serat halus yang berasal dari daging buah.
  • Dengan pengolahan pendahuluan (Sterilisasi) yang baik maka pengaruh zat-zat lendir dan lilin dari dalam daging buah dapat diperkecil.

Namun demikian tidak boleh diabaikan pengaruhnya sebagai emulgator dan terutama sebagai stabilisator jika zat-zat itu terdapat dalam fat pit meskipun dalam persentase yang rendah, karena mempersukar pemisahan minyak dari dalam fat pit.

Cara-cara untuk memperoleh & memisahkan minyak dari minyak kasar

Ada berbagai cara yang lazim dilakukan dalam pemurnian minyak kasar di pabrik minyak kelapa sawit yaitu :

  • Cara dengan pengendapan (Settling)                                                                                                                                                                           Pemisahan minyak dari minyak kasar terjadi/berlangsung karena pengendapan bagian yang berat (sludge + air) dan minyak yang terpisah berada dilapisan atas.
  • Cara dengan pemusingan (Centrifugal)                                                                                                                                                                        Dengan cara ini waktu pemisahan yang diperlukan menjadi lebih singkat karena bantuan tenaga centrifugal.
  • Cara dengan pengaruh biologis                                                                                                                                                                                              Cara ini adalah merupakan kelanjutan dari kedua cara tersebut diatas dan dilakukan pada proses pemisahan di fat pit atau Sludge Oil Recovery System.

Pada umumnya cara-cara tersebut diatas dilakukan secara tergabung ; baik gabungan dari ketiganya maupun dua dari ketiga cara.

 

Artikel Terkait :

 

Pengempaan (Pressing)

Tujuan Utama

Tujuan utama dari proses pengempaan (Pressing) adalah mengeluarkan Minyak dari bubur buah yang telah diaduk. Secara umum pengambilan minyak nabati dari sumbunya disebut “ekstraksi minyak atau lemak.”

Pekerjaan ekstraksi minyak dapat dilakukan dengan cara :

  1. Ekstraksi Minyak (lemak) secara mekanis.
  2. Ekstraksi Minyak (lemak) secara Fisis.
  3. Ekstraksi Minyak (lemak) secara Mekanis dan fisis.
  4. Ekstraksi Minyak (lemak) secara Biologis.

Pada umumnya ekstraksi Minyak Kelapa Sawit dilakukan secara Mekanis yaitu dengan pengepressan atau pengempaan.

Dengan pengepressan atau pengempaan minyak yang ada pada bubur Buah Kelapa Sawit akan dibebaskan dari bubur buah dan terpisah dari serat dan biji Sawit.

Jenis alat kempa yang dikenal, yaitu :

  1. Kempa Hydraulik (Hydraulic Press)
  2. Kempa Ulir (Screw Press).

Kempa Ulir (Screw Press) dalam penggunaannya lebih menguntungkan dibandingkan dengan kempa Hydraulik (Hydraulic Press).

Keuntungan-keuntungan yang diperoleh antara lain :

  1. Bekerja secara kontinyu.
  2. Kapasitas Olahnya tinggi.
  3. Efisiensi pengempaan lebih tinggi (kehilangan Minyak kecil).
  4. Pemakaian tenaga (Operator) yang sedikit.

“Kelemahan Screw Press terutama adalah karena tingginya persentase biji yang pecah & kadang-kadang sulit untuk dimonitor secara visual”.

Hal-hal yang perlu diperhatikan dalam Pengempaan (Pressing) :

  1. Suhu air panas harus mencapai 90ºC.
  2.  Tekanan Press harus diatur sedemiian rupa agar kerugian minyak didalam ampas cukup rendah sedangkan sebaliknya biji-biji yang pecah atau hancur harus juga rendah.
  3.  Setiap Press harus distop dari pemakaian untuk direkondisi (Rebuilt) Screwnya setelah berjalan ± 500 jam.

Screw yang sudah aus melebihi 5 s/d 6 mm akan menyebabkan tingginya percentage biji pecah dan disamping itu akan juga mempercepat kerusakan Saringan Press (Press Cage).

Artikel Terkait :

Pemurnian (Clarification)

Process Flow Diagram Of Palm Oil Mill

 

Hal-hal yang Perlu Diketahui Selama Proses Pengadukan

Untuk pengertian praktis dibutuhkan pengetahuan mengenai hal-hal yang terjadi selama pengadukan yaitu :

  • Perusakan dari sel minyak
  • Pengeluaran minyak dari dalam ketel pengaduk
  • Pendidihan isi dari Ketel Pengaduk
  • Pengisian Ketel Pengaduk & pengaruhnya terhadap effek pengadukan

1. Perusakan sel-sel minyak

Karena gesekan yang timbul pada waktu pengadukan maka dinding sel (daging buah) yang mengandung minyak akan terkoyak/terusak sehingga minyak (bintik-bintik minyak) akan keluar dengan sendirinya atau sekurang-kurangnya dapat dengan mudah sekali dikeluarkan dari dalam sel pada proses pengempaan (Press).

Jika diambil ampas pengempaan dan diteliti sel-sel minyaknya dibawah Mikroskop, maka akan dapat dilihat bahwa sel minyak itu sebahagian besar hilang dan hanya pada beberapa bahagian saja masih kelihatan sedikit sisa minyak berbentuk bintik-bintik.

Apabila selama proses pengadukan minyak yang telah membebaskan diri dari selnya tersebut tidak segera dialirkan keluar dari dalam Ketel Pengaduk, maka masa yang sedang diaduk menjadi licin serta akan berakibat menurunnya effek pengadukan dan dengan demikian tidak dapat memenuhi apa yang diinginkan.

2. Pengeluaran minyak dari dalam pengaduk

Kecuali menurunkan effek pengadukan, seperti dijelaskan diatas maka minyak “bebas” yang tidak dikeluarkan dari dalam Ketel Pengaduk (Digester) akan membentuk emulsi dengan unsur lain yang terkandung dalam minyak kasar itu.

Minyak kasar ini terbentuk dari unsur-unsur :

  1. Non-fat (bahan bukan lemak) : terdiri dari serat-serat, sisa-sisa sel & bahan lain yang dapat larut.
  2. Cairan bukan minyak.
  3. Emulsi cairan bukan minyak dengan minyak.
  4. Emulsi minyak dengan cairan bukan minyak.
  5. Minyak.

Terutama emulsi tersebut (3) dan (4) adalah cairan yang tinggi sekali Viskositasnya yang dihasilkan oleh pengempaan pada tekanan tinggi.

Untuk menurunkan Viskositas dapt ditempuh beberapa cara, antara lain :

  • Menambah air panas kedalam Ketel Pengaduk tetapi hasilnya tidak memuaskan, malahan merugikan karena : effek pengadukan akan sangat menurun. Daging akan “tercuci” sehingga sel-sel tidak terpecah dan kandungan minyak didalamnya akan ikut terbawa bersama lumpur dan meningkatkan kerugian minyak didalam lumpur (Sludge).
  • Penambahan air panas pada minyak kasar hanya dilakukan pada proses pengempaan (Press).
  • Pengenceran Minyak kasar tersebut diperlukan terutama pada proses penyaringan dan pemisahan awal antara minyak dengan lumpur (Sludge) pada System Continous Settling Tank (Clarifier) di Station Clarification (Station Pemurnian Minyak).
  • Untuk memperoleh pengenceran yang dikehendaki diperlukan penambahan air panas yang tidak sedikit yaitu berkisar anatara 15% s/d 20% per ton TBS. Hal ini menyebabkan timbulnya pekerjaan extra pada Station Pemurnian Minyak.

3. Pemanasan Isi Ketel Pengaduk

Meskipun Minyak “bebas” didalm pengadukan telah dialirkan keluar dari dalam Ketel Pengaduk tetapi tetap masih akan terdapat sisa-sisa cairan yang karena pendidihan membentuk gelembung yang timbul bergerak kearah atas sambil membawa sisa cairan yang mengendap dibagian bawah dari Ketel Pengaduk, sehingga msa yang sudah menjadi lebih kesat akan encer kembali dan merugikan effek pengadukan.

Kecuali hal yang tersebut diatas itu maka gelembung pendidihan yang selaput tipisnya mengandung minyak, jika kemudian pecah, akan menyebabkan minyak yang semula sudah berhimpun akan terpencar kembali dalam bintik minyak yang sangat halus (terjadi emulsi).

Ketentuan dibawah ini adalah mutlak dan harus menjadi perhatian yaitu :

  • Jika Ketel Pengaduk terisi penuh maka tekanan yang ditimbulkan oleh beban berat isian itu sendiri mempertinggi gaya gesekan yang diperlukan untuk memperoleh hasil pengadukan yang optimal.
  • Jangka waktu pengadukan yang harus dialami oleh isi Ketel Pengaduk sebelum di Press juga merupakan faktor yang cukup penting untuk dapat memenuhi syarat-syarat pengadukan yang baik.
  • Semakin banyak isian suatu Ketel Pengaduk maka semakin lama buah akan teraduk sebelum dikempa, jadi gabungan dari kedua faktor : isian Ketel Pengaduk dan jangka waktu pengadukan harus diusahakan sedapat mungkin untuk dipenuhi secara simultan.